万物互联下边缘计算有哪些挑战
万物互联下边缘计算有以下这些挑战:
延迟最小化:高延迟已经成为基于万物互联智能应用亟待解决的一个严重问题。边缘计算使得数据分析在网络的边缘进行,可以支持时间敏感的功能。这是很多商业应用所必须要求的,比如,拥有毫秒级反应时间的嵌入式人工智能(Artificial Intelligence, AI)应用。作为一个解决方案平台,边缘计算必须保证满足服务质量且及时地交付任务,以达到延迟敏感应用的需求。
动态和自治:由于万物互联应用的启动-关闭转换和边缘节点的移动性,边缘网络的状态是动态改变的,同时,会有一些不可靠边缘节点接入到网络,边缘计算要能够自治地处理这些动态情况,支持边缘计算的架构需要是动态可扩展的,而且要能够考虑到个人喜好,满足定制需求。
服务质量:万物互联应用能指定其服务质量(Quality-of-Service, QoS)需求,如,延迟时间、吞吐量和数据位置,来满足关系感知的卸载处理。边缘计算需要可以决定在一个共享的边缘网络中同时部署多少个应用,并达到用户要求的服务质量参数。
网络管理:万物互联场景下,由于海量设备的接入,产生许多常见网络现象。例如,不恰当的虚拟化支持、缺乏无缝连接和低效的拥塞控制,降低了整体的网络性能。在边缘计算中有效使用网络资源对万物互联来说是最基本的。
成本优化:应用一个合适的平台来实现边缘计算必要的可扩展基础设施的部署,牵扯到前期大量的投资和操作花费。[16]这些花费的大部分与网络节点的布局有关,所以,为了最小化整体成本,边缘节点的布置需要精心规划和优化。在合适的位置部署最优化的节点数量可以大幅降低资金花销,边缘节点的最优化布局可以最小化运营成本。
能耗管理:边缘计算需要分配终端和云之间的计算、存储和控制功能,使得这个“连续统”的可用资源得到充分的利用,从而优化整个系统的效率和性能。能耗管理是一个基于万物互联场景的重要目标,边缘计算需要能源有效的万物互联设备和应用。数以亿计的万物互联节点需要一个智能感知平台获取能源以确保可扩展性、减少成本且避免频繁的电池替换来支持不同应用。
资源管理:在应用级服务实现时,最优的资源管理也是关键的。适当的资源管理包括资源协调、可用资源估计和适当的负载分配。
数据管理:目前,海量的万物互联设备会产生巨量的数据需要以实时方式管理。在边缘计算中,需要有效的数据管理机制。万物互联设备产生数据的集合和传输也是数据管理中的一项挑战。
安全与隐私:万物互联场景下的安全不同于其他环境,主要是因为万物互联设备受限的资源属性。边缘计算由于其分层结构特性可以天然地为资源受限的设备提供一定的安全保证,也因为如此特性,使得边缘计算收集的数据更加靠近用户端,可能牵扯到隐私问题。这种情况下,万物互联的安全泄露更加具有毁灭性,而边缘节点监测和操纵物理设备的能力是有可能威胁生命的。解决安全与隐私的问题,是实现万物互联与边缘计算的基础。